

Summary of Recent Chemical Effects Testing

Bruce Letellier
Los Alamos National Laboratory

Kerry Howe and Ashok Gosh University of New Mexico

Test Objectives

- Scope chem/temp induced degradation mechanisms contributing to debris generation and head loss
- Motivated by ACRS concern regarding "gelatinous" material reported in TMI at the time of reentry
 - Review existing literature and establish chemical test conditions
 - Corrosion of metals with precipitation of flocculant
 - Rate of corrosion for iron, zinc, aluminum
 - Head-loss effects of chemical precipitation
 - Chemical degradation of fibrous debris beds leading to slow compaction and increasing head loss
 - Degradation/dissolution of nonqualified coatings present in containment

Summary of Results

- Metal corrosion credible for exposure to borated cooling water
 - UNM tests confirm literature reports at low temp
 - Follow on studies in progress for high temp
- Low solubility leads to precipitation at low concentrations
- Significant head-loss observed in combination with fiber debris beds
- Plant vulnerability depends on surface area of exposed metal and exposure time

LOCA Chemical Conditions

Parameters	T = 0	T = 10	T = 23	T = 15	T = 24	T = 48
	sec	sec	sec	min	hr	hr
Lithium (ppb)	1400	1400	1400	630	115	115
Borate (ppm)	800	800	800	1400	2070	2070
Temperature	40	124	128	118	63	63
°C (°F)	(104)	(255)	(262)	(244)	(145)	(145)
рН	7.7	7.0	7.2	8.4	7.9	7.8
Pressure	0.1	0.38	0.47	0.36	0.14	0.13
Mpa (bar)	(1)	(3.8)	(4.7)	(3.6)	(1.4)	(1.3)

Radiolytic decomposition products not considered as precursor to sump failure

Head-loss Test Apparatus

- Diameter 1/3 of large setup
- Flow meter has 20gpm max
- 10 liter total volume
- Online temperature probe
- Flow valve in the pump outlet
- Continuous pH control
- Pump heats water to ~47 °C
- Replicate measurements with tap water and fiber confirm same response between large and small loops

Head Loss in Different Chemical Environments

- Tests done in deionized water supplemented by strong buffer solution of boric acid and lithium hydroxide (Calcium hydroxide [Ca(OH)₂] added to simulate concrete ablation)
- Fiber bed established
- Metallic salts (representative concentrations) used to induce precipitation
 - Iron nitrate nanohydrate [Fe(NO₃)₃ ⋅ 9 H₂O]
 - Aluminum nitrate nanohydrate [Al(NO₃)₃ ⋅ 9 H₂O]
 - Zinc nitrate hexahydrate [Zn(NO₃)₃ · 6 H₂O]
- Head loss measurement

Sample Debris Beds

Head-Loss Observations

Headloss with chemical concentration at pH=7

Engineering Chemistry Facts

- Atomic Weights:
 - Al = 27 g/mole
 - Fe = 56 g/mole
 - Zn = 65 g/mole
- 10⁻⁴ M (moles/liter)
 - $Al = 23 lb/10^6 gal$
 - Fe = 47 lb/10⁶ gal
 - Zn = 55 lb/10⁶ gal

- Threshold of measurable ΔP increase at 10⁻⁴ M
- 7 to 10 ft of additional head loss at 10⁻³ M
- 10⁻³ M (moles/liter)
 - Al = 0.27 g/10 liter
 - Fe = 0.56 g/10 liter
 - Zn = 0.65 g/10 liter
- Poor solubility of metals reaches saturation at low concentration
- Aluminum nitrate commonly used as water clarity coagulant
- Head-loss *much* more severe than equal mass of particulate

ESEM Images of Dry Samples

Pure Fiber

Iron Bed

Iron-bed Close Up

Apparent adhesion of amorphous material may not permit application of NUREG 6224 head-loss correlation

Dissolved Metal Source Terms (Leaching Tests)

- STUK reports Zn corrosion rates between 0.01 g/m²/hr and 11.3 g/m²/hr under mixed temps and pH
- UNM 11-day immersion tests of zinc granules and bulk coupons confirms lower rate at room temp, pH 7
 - Measured sample mass before and after
 - Analytic concentration measurement of solution
 - Never reached saturation limit
 - Repeating for chips/granules of inorganic zinc primer
- UNM 11-day immersion tests of zinc granules at 80°C, pH 7 presently inconclusive
 - All samples turn black and gain mass
 - Rapid dissolution suspected to reach solubility limit
 - Secondary reaction products different from precipitation?
 - Hard crystalline particulate formed on surfaces
 - Daily test intervals now used to isolate corrosion rate

ESEM of Secondary High Temp Surface Reaction

Clean Zinc Granule

Corroded Zinc Granule

Preliminary Vulnerability Ranges for Zinc Corrosion

Remaining Work

- Incremental leaching cycle to measure high-temp corrosion rate
- Immersion of consumer grade alkyd coating samples to monitor for qualitative degradation mechanisms
- Long-term (24 to 36 hr) small loop head-loss tests to monitor for chemical degradation effects
- Practical correlation of head loss to debris-bed mass
- Documentation of findings in forthcoming NUREG
- Conduct of peer review

